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1 Internal Model Control Structure - (IMC)

Internal Model Control (IMC) forms the basis for the systematic control system design
methodology that is the primary focus of this text. The first issue one needs to understand
regarding IMC is the IMC structure (to be distinguished from the IMC design procedure).

Figure 1B is the “Internal Model Control” or “Q-parametrization” structure. The IMC
structure and the classical feedback structure (Figure 1A) are equivalent representations;
Figure 2 demonstrates the evolution of the IMC structure. We will show that the design of
q(s) is more straightforward and intuitive than the design of c(s). Having designed q(s), its
equivalent classical feedback controller c(s) can be readily obtained via algebraic transfor-
mations, and vice-versa

c =
q

1− p̃q (1)

q =
c

1 + p̃c
(2)

1.1 Closed-loop transfer functions, IMC structure

A statement of the sensitivity ε and complementary sensitivity η in terms of the internal
model p̃ and controller q(s) corresponds to:

y =
pq

1 + q(p− p̃)r +
1− p̃q

1 + q(p− p̃)d (3)

= η(s)r(s) + ε(s)d(s) (4)

In the absence of plant/model mismatch (p = p̃), these functions simplify to

η̃(s) = p̃q ε̃(s) = 1− η̃(s) = 1− p̃q p̃−1η̃ = q (5)

which lead to the following expressions for the input/output relationships between y, u, e
and r, d, and n:

y = p̃qr + (1− p̃q)d− p̃qn (6)

u = qr − qd− qn (7)

e = (1− p̃q)r − (1− p̃q)d− (1− p̃q)n (8)

1.2 Internal Stability

1. Assume a perfect model (p = p̃). The IMC system (Figure 1B) is internally stable (IS)
if and only if both p and q are stable.

2. Assume that p is stable and p = p̃. Then the classical feedback system (Figure 1A)
with controller according to Equation (1) is IS if and only if q is stable.
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Figure 1: Classical (A) and Internal Model Control (B) Feedback Structures.
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Figure 2: Evolution of the Internal Model Control Feedback Structure.
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The IMC structure thus offers the following benefits with respect to classical feedback:

• no need to solve for roots of the characteristic polynomial 1 + pc; one simply examines
the poles of q;

• one can search for q instead of c without any loss of generality.

1.3 Regarding Implementation

For linear, stable plants in the absence of constraints on u, it makes no difference to imple-
ment the controller either through c or q. However, in the presence of actuator constraints,
one can use the IMC structure to avoid saturation problems without the need for special
anti-windup measures.

1.4 Asymptotic closed-loop behavior (System Type)

We need to insure that the feedback control system leads to no offset for setpoint or distur-
bance changes; we thus need to define so-called Type 1 and Type 2 inputs:

Type 1 (Step Inputs): No offset to asymptotically step setpoint/disturbance changes is
obtained if

lim
s→0

p̃q = η̃(0) = 1

Type 2 (Ramp Inputs): For no offset to ramp inputs, it is required that

lim
s→0

p̃q = η̃(0) = 1

lim
s→0

d

ds
(p̃q) =

dη̃

ds

∣∣∣∣∣
s=0

= 0

1.5 Requirements for Physical Realizability on q, the IMC Con-
troller

In order for q, the IMC controller, to result in physically realizable manipulated variable
responses, it must satisfy the following criteria:

1. Stability. The controller must generate bounded responses to bounded inputs; therefore
all poles of q must lie in the open Left-Half Plane.

2. “Properness.” We established in the second lab prep session that differentiation of step
inputs by a feedback controller leads to impulse changes in u, which are not physically
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realizable. In order to avoid pure differentiation of signals, we must require that q(s)
be proper, which means that the quantity

lim
|s|→∞

q(s)

must be finite. We say q(s) is strictly proper if

lim
|s|→∞

|q(s)| = 0

A strictly proper transfer function has a denominator order greater than the numerator
order. q(s) is semi-proper, that is,

lim
|s|→∞

|q(s)| > 0

if the denominator order is equal to the numerator order.

A system that is not strictly proper or semiproper is called improper.

3. Causality. q(s) must be causal, which means that the controller must not require
prediction, i.e., it must rely on current and previous plant measurements. A simple
example of a noncausal transfer function is the inverse of a time delay transfer function

q(s) =
u(s)

e(s)
= Kce

+θs (9)

The inverse transform of (9) relies on future inputs to generate a current output; it is
clearly not realizable:

u(t) = Kce(t+ θ) (10)

2 Internal Model Control Design Procedure

The IMC design procedure is a two-step approach that, although sub-optimal in a general
(norm) sense, provides a reasonable tradeoff between performance and robustness. The main
benefit of the IMC approach is the ability to directly specify the complementary sensitivity
and sensitivity functions η and ε, which as noted previously, directly specify the nature of
the closed-loop response.

2.1 Statement of the IMC Design Procedure

The IMC design procedure consists of two main steps. The first step will insure that q is
stable and causal; the second step will require q to be proper.

Step1: Factor the model p̃ into two parts:

p̃ = p̃+p̃− (11)
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p̃+ contains all Nonminimum Phase Elements in the plant model, that is all Right-
Half-Plane (RHP) zeros and time delays. The factor p̃−, meanwhile, is Minimum
Phase and invertible; an IMC controller defined as

q̃ = p̃−1
−

is stable and causal.

The factorization of p̃+ from p̃ is dependent upon the objective function chosen. For
example,

p̃+ = e−θs
∏
i

(−βis+ 1) Re(βi) > 0 (12)

is Integral-Absolute-Error (IAE)-optimal for step setpoint and output disturbance
changes. Meanwhile, the factorization

p̃+ = e−θs
∏
i

(−βis+ 1)

(βis+ 1)
Re(βi) > 0 (13)

is Integral-Square-Error (ISE)-optimal for step setpoint/output disturbance changes.
As noted in Morari and Zafiriou [2] using ramp, exponential, or other inputs would
imply different factorizations.

Step 2: Augment q with a filter f(s) such that the final IMC controller q = q̃f(s) is now, in
addition to stable and causal, proper. With the inclusion of the filter transfer function,
the final form for the closed-loop transfer functions characterizing the system is

η̃ = p̃q̃f (14)

ε̃ = 1− p̃q̃f (15)

The inclusion of the filter transfer function in Step 2 means that we no longer obtain
“optimal control,” as implied in Step 1. We wish to define filter forms that allow for no
offset to Type 1 and Type 2 inputs; for no offset to step inputs (Type 1), we must require
that η̃(0) = 1, which requires that q(0) = p̃−1(0) and forces

f(0) = 1 (16)

A common filter choice that conforms to this requirement is

f(s) =
1

(λs+ 1)n
(17)

The filter order n is selected large enough to make q proper, while λ is an adjustable parameter
which determines the speed-of-response. Increasing λ increases the closed-loop time constant
and slows the speed of response; decreasing λ does the opposite. λ can be be adjusted on-line
to compensate for plant/model mismatch in the design of the control system; the higher the
value of λ, the higher the robustness the control system.
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For no offset to Type-2 (ramp) inputs, in addition to the requirement (16), the closed-loop
system must satisfy the following

d

ds
(p̃q) |s=0=

dη̃

ds

∣∣∣∣∣
s=0

= 0 (18)

By substituting the expression for q obtained from the two-step IMC design procedure, we
can write (18) specifically as

d

ds
(p̃+f)|s=0 = 0 (19)

One such filter transfer function which meets the condition (18) is

f(s) =
(2λ− p̃′+(0))s+ 1

(λs+ 1)2
(20)

Specific forms for p̃′+(0) for various simple factorizations of nonminimum phase elements are
shown below:

d

ds
(e−θs)|s=0 = −θ (21)

d

ds
(−βs+ 1)|s=0 = −β (22)

d

ds
(
−βs+ 1

βs+ 1
)|s=0 = −2β (23)

Equation (20) will enable us to obtain PID rules for plants with integrator, as will be shown
later in this document.

2.2 Why factor p̃?

Recall that for classical feedback

y = ηr + εd (24)

η = (1 + pc)−1pc (25)

ε = (1 + pc)−1 (26)

Using the IMC structure, for no plant/model mistmatch (p = p̃), we have

η̃ = p̃q ε̃ = 1− p̃q

“Perfect” control (meaning y = r for all time) is achieved when η̃ = 1 and ε̃ = 0, which
implies that

q = p̃−1 (27)

However, in order for u = q(r − d), the manipulated variable response, to be physically
realizable, q must be stable, proper, and causal. Nominimum phase behavior (deadtime and
RHP zeros) will cause q = p̃−1 to be noncausal and unstable, respectively; if p̃ is strictly
proper, then q will be improper as well. Hence the need for factorization.
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One can better understand this discussion by examining a simple example. Consider the
plant model

p̃(s) =
K(−βs+ 1)e−θs

τ 2s2 + 2ξτs+ 1
(28)

where β > 0, which implies the presence of a Right-Half Plane zero. Nonminimum phase
elemets for this plant are (e−θs(−βs + 1). The “perfect” IMC controller for this system
corrresponds to

q = p̃−1 =
τ 2s2 + 2ξτs+ 1

K(−βs+ 1)
e+θs

While y = r using this controller, the manipulated variable response is physically unrealizable
for two reasons. First, q is unstable as a result of a Right-Half Plane pole arising from
(−βs+ 1). Secondly, q is noncausal because of the presence of the time lead term e+θs.

Applying an appropriate factorization to this model as described earlier results in stable,
causal control action; a correctly chosen filter order will insure properness and a physically
realizable response. One must keep in mind that the nonminimum phase elements e−θs(−βs+
1) will always form part of the closed-loop response!

3 Application of IMC Design to PID controller tuning

The IMC control design procedure, when applied to low-order models, will often result in
PID and PID-like controllers. Developing these is the focus of this section:

3.1 Example 1: PI Control

A PI tuning rule arises from applying IMC to the first-order model:

p̃ =
K

τs+ 1
τ > 0 (29)

under the condition that d and r are step input changes.

Step 1: Factor and invert p̃; since p̃+ = 1, we obtain:

q̃ =
τs+ 1

K

Step 2: Augment with a first-order filter

f =
1

(λs+ 1)

The final form for q is

q =
τs+ 1

K(λs+ 1)
(30)
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We can now solve for the classical feedback controller equivalent c(s) to obtain

c =
q

1− pq =
τ

Kλ
(1 +

1

τs
) (31)

which leads to the tuning rule for a PI controller

Kc =
τ

Kλ
(32)

τI = τ (33)

The corresponding nominal closed-loop transfer functions for this control system are

η̃ =
1

λs+ 1
p̃−1η =

τs+ 1

k(λs+ 1)
ε̃ =

λs

λs+ 1
(34)

3.2 Example 1b: PI Control

Consider now the first-order model with Right Half Plane (RHP) zero:

p̃(s) =
K(−βs+ 1)

(τs+ 1)
β, τ > 0 (35)

again under the assumption that the inputs to r and d are steps.

Step 1: Use the IAE-optimal factorization for step inputs:

p̃+ = (−βs+ 1) p̃− =
K

(τs+ 1)
q̃ =

(τs+ 1)

K
(36)

Step 2: Use a first-order filter

f =
1

(λs+ 1)
q =

(τs+ 1)

K(λs+ 1)
(37)

Solving for the classical feedback controller leads to another tuning rule for a PI controller:

c(s) = Kc(1 +
1

τIs
) (38)

Kc =
τ

K(β + λ)
τI = τ

3.3 Example 1c: PI with filter control

Consider now the first-order model with Left Half-Plane (LHP) zero:

p̃(s) =
K(βs+ 1)

(τs+ 1)
β > 0 τ > 0 (39)

again under the assumption that the inputs to r and d are steps.
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Step 1: No nonminimum phase behavior in p̃; since p̃+ = 1, we obtain:

p̃− =
K(βs+ 1)

(τs+ 1)
q̃ =

(τs+ 1)

K(βs+ 1)
(40)

Step 2: Use a first-order filter (q is now strictly proper).

f =
1

(λs+ 1)
q =

(τs+ 1)

K(βs+ 1)(λs+ 1)
(41)

Solving for the classical feedback controller c = q
1−p̃q leads to a tuning rule for an PI with

filter controller:

c(s) = Kc

(
1 +

1

τIs

)
1

(τF s+ 1)
(42)

Kc =
τ

Kλ
τI = τ

τF = β

It is interesting to note that in IMC design, the presence of a Left-Half Plane zero in the
model leads a low-pass filter element in the classical feedback controller!

3.4 Example 2: PID Control

Consider now the second-order model with RHP zero:

p̃(s) =
K(−βs+ 1)

(τ1s+ 1)(τ2s+ 1)
β, τ1, τ2 > 0

again under the assumption that the inputs to r and d are steps.

Step 1: Use the IAE-optimal factorization for step inputs:

p̃+ = (−βs+ 1) p̃− =
K

(τ1s+ 1)(τ2s+ 1)
(43)

q̃ =
(τ1s+ 1)(τ2s+ 1)

K
(44)

Step 2: Use a first-order filter (even though this means that q will still be improper).

f =
1

(λs+ 1)
(45)

q =
(τ1s+ 1)(τ2s+ 1)

K(λs+ 1)
(46)
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Solving for the classical feedback controller c = q
1−p̃q leads to a tuning rule for an ideal

PID controller:

c(s) = Kc(1 +
1

τIs
+ τDs) (47)

Kc =
τ1 + τ2
K(β + λ)

(48)

τI = τ1 + τ2 (49)

τD =
τ1τ2
τ1 + τ2

(50)

3.5 Example 3: PID with Filter Control

Consider a second-order model with RHP zero

p̃(s) =
K(−βs+ 1)

(τ1s+ 1)(τ2s+ 1)
β, τ1, τ2 > 0 (51)

β > 0, as before, and subject to step inputs to the closed-loop system. Applying the IMC
design procedure gives:

Step 1: Use the ISE-optimal factorization

p̃+ =
−βs+ 1

βs+ 1
p̃− =

K(βs+ 1)

(τ1s+ 1)(τ2s+ 1)
(52)

Step 2: A first-order filter leads to q which is semiproper:

q =
(τ1s+ 1)(τ2s+ 1)

K(βs+ 1)(λs+ 1)
f =

1

λs+ 1
(53)

Solving for c(s) as before results in a filtered ideal PID controller

c = Kc(1 +
1

τIs
+ τDs)

1

(τF s+ 1)

with the associated tuning rule

Kc =
(τ1 + τ2)

K(2β + λ)
(54)

τI = τ1 + τ2 (55)

τD =
τ1τ2
τ1 + τ2

(56)

τF =
βλ

2β + λ
(57)

Note the insight given by IMC design procedure regarding on-line adjustment (by changing
the value for the IMC filter parameter λ).
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3.6 Example 4: Deadtime compensation (PI controller + Smith
Predictor)

Consider the first-order with delay plant

p̃(s) =
Ke−θs

τs+ 1

and step setpoint/output disturbance changes to the closed-loop system.

Step 1: The optimal factorization (IAE, ISE, or otherwise) is p̃+ = e−θs, resulting in:

q̃ = p̃−1
− =

τs+ 1

K

Step 2: A first-order filter makes q semiproper;

q =
τs+ 1

K(λs+ 1)
η̃ =

e−θs

(λs+ 1)
(58)

The corresponding feedback controller is

c(s) =
τs+ 1

K(λs+ 1− e−θs) (59)

which can be expressed as a PI controller using the Smith Predictor structure (see Figure
17.4, page 605 in Ogunnaike and Ray).

3.7 PID control for plants with integrator

For plants with integrator, we need to keep in mind that the practical problem will most
likely demand no offset for Type-2 inputs, for example, ramp output disturbances (d = A

s2
).

The application of a Type-2 filter meeting the requirement

d

ds
(p̃+f) =

d

ds
(η̃)|s=0 = 0 (60)

as described in Section 2.1 is necessary in order to meet this requirement.

Various cases of PI, PID, and PID with filter controller tuning rules arising from plants
with integrator are described in references [1] and [2], and summarized in Table 1; note the
progression in controller sophistication as closed-loop performance requirements increase!

4 PID Tuning Rules for 1st-order with Deadtime Plants

A summary of the PI, PID, and PID with filter tuning rules for first-order plants with
deadtime is found in Table 3. The PID tuning rule for plants with deadtime arises from
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Plant η̃ = p̃q = p̃+f Controller c(s) No Offset Conditions
K(−βs+1)

s
−βs+1
λs+1

P Steps only

K(−βs+1)
s

(−βs+1)
(βs+1)(λs+1)

P with filter Steps Only

K(−βs+1)
s

(−βs+1)[(β+2λ)s+1]
(λs+1)2

PI Steps and Ramps

K(−βs+1)
s

(−βs+1)
(βs+1)

[2(β+λ)s+1]
(λs+1)2

PI with filter Steps and Ramps

K(−βs+1)
s(τs+1)

(−βs+1)
βs+1)

[2(β+λ)s+1]
(λs+1)2

PID with filter Steps and Ramps

Table 1: PID tuning rules for plants with integrator

using a first-order Padé approximation in lieu of the time delay.

p =
Ke−θs

τs+ 1
(61)

≈ K(− θ
2
s+ 1)

( θ
2
s+ 1)(τs+ 1)

(62)

The Padé-approximated plant (62) is a second-order plant with RHP zero; using the analysis
from the Example 2: PID Control subsection leads to a PID tuning rule:

Kc =
2τ + θ

K(2λ+ θ)
(63)

τI = τ +
θ

2
(64)

τD =
τθ

2τ + θ
(65)

As shown in Rivera et al. [1] the ratio of the ISE objective function for the PID control
system

J = ISE =
∫ ∞
0

(y − r)2dt (66)

versus the optimal ISE for a first-order with deadtime plant

Jopt = θ2 (67)

can be plotted as a function of λ
θ

independent of τ , as noted in Figure 3. Figure 3 also shows
M , which represents the maximum peak of the nominal complementary sensitivity function

M = sup
ω
η (68)

This measure can be related to robustness of the closed-loop system, as described in [1]. Note
that at λ

θ
≈ 0.8 the IMC-PID controller results in an ISE value that is only 10% greater
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Table 2: IMC-Based Tuning for Ideal PID Controllers Using Simple Models

c(s) = Kc(1 +
1

τIs
+ τDs)

1

(τF s+ 1)

Model Input vM η̃ = p̃q = p̃q̃f KcK τI τD τF

K
τs+1

1
s

1
λs+1

τ
λ

τ - -

K
τ2s2+2ζτs+1

1
s

1
λs+1

2ζτ
λ

2ζτ τ
2ζ

-

K(−βs+1)
τs+1

1
s

−βs+1
λs+1

τ
β+λ

τ - -

β > 0
K(−βs+1)
τs+1

1
s

(−βs+1)
(βs+1)(λs+1)

τ
2β+λ

τ - βλ
2β+λ

β > 0
K(−βs+1)
τs+1

1
s

1
λs+1

τ
λ

τ - −β
β < 0

K(−βs+1)
τ2s2+2ζτs+1

1
s

(−βs+1)
λs+1

2ζτ
β+λ

2ζτ τ
2ζ

-

β > 0
K(−βs+1)
τ2s2+2ζτs+1

1
s

(−βs+1)
(βs+1)(λs+1)

2ζτ
2β+λ

2ζτ τ
2ζ

βλ
2β+λ

β > 0
K(−βs+1)
τ2s2+2ζτs+1

1
s

1
λs+1

2ζτ
λ

2ζτ τ
2ζ

−β
β < 0
K
s

1
s2

2λs+1
(λs+1)2

2
λ

2λ - -

K
s(τs+1)

1
s2

2λs+1
(λs+1)2

2λ+τ
λ2 2λ+ τ 2λτ

2λ+τ
-

K(−βs+1)
s

1
s2

(−βs+1)(2λ+β)s+1
(λs+1)2

2λ+β
(λ+β)2

2λ+ β - -

β > 0
K(−βs+1)

s
1
s2

(−βs+1)(2(β+λ)s+1)
(βs+1)(λs+1)2

2(β+λ)
2β2+4βλ+λ2 2(β + λ) - βλ2

2β2+4βλ+λ2
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Figure 3: J/Jopt and M for the IMC-PID controller (top), and comparison with other meth-
ods (bottom): open-loop Ziegler-Nichols (O-L Z-N), closed-loop Ziegler-Nichols (C-L Z-N),
and Cohen-Coon (C-C).
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Controller KKc τI τD τF Recommended λ
θ
(λ > 0.2τ always)

“Original” PI τ
λ

τ − − > 1.7

“Improved” PI 2τ+θ
2λ

τ + θ
2

− − > 1.7

PID 2τ+θ
(2λ+θ)

τ + θ
2

τθ
(2τ+θ)

− > 0.8

PID with filter 2τ+θ
2(λ+θ)

τ + θ
2

τθ
2τ+θ

λθ
2(λ+θ)

> 0.25

Table 3: IMC-based tuning rules for PI, PID, and PID with filter controllers for a first-order
with deadtime system

than optimal, while maintaining a low value for M . The controlled variable response of the
IMC-PID controller for various settings of λ

θ
is shown in Figure 4.

The “original” PI tuning rule is found by approximating the first-order delay plant with
just the first-order lag term, without delay:

p =
Ke−θs

τs+ 1
≈ K

τs+ 1
(69)

Figure 5 shows a marked deterioration in achievable ISE performance, relative to the PID
tuning rule. At its best setting (λ

θ
≈ 1.35) the IMC-PI controller results in an ISE value

that is over 50% greater than optimal, with a high value for the complementary sensitivity
function, M ≈ 1.4. The “Improved” PI rule arises by incorporating the delay in the time
constant of the internal model p̃

p =
Ke−θs

τs+ 1
≈ K

(τ + θ
2
)s+ 1

(70)

resulting, as shown in Example 1: PI control in the tuning rule:

Kc =
2τ + θ

2Kλ
(71)

τI = τ +
θ

2
(72)

The improved PI rules, as the name implies, result in superior performance over the standard
IMC-PI rules; however, the performance obtained from these rules varies as a function of
θ/τ . A “worst-case” performance and robustness analysis with respect to λ/θ for a wide
range of θ/τ is presented in Figure 6 (top). Evaluating the improved PI tuning rule for a
specific choice of λ/θ = 1.7 shows that the corresponding performance is superior to that of
the Cohen-Coon and closed-loop Ziegler-Nichols rules over most of the θ/τ range, as noted
in Figure 6 (bottom).
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Tuning rules for a PID with filter controller (shown in Table 3) can be obtained as well
using (62) and the analysis of Example 3: PID with Filter Control, leading to the result

Kc =
2τ + θ

2K(λ+ θ)
(73)

τI = τ +
θ

2
(74)

τD =
τθ

2τ + θ
(75)

τF =
λθ

2(λ+ θ)
(76)

Figure 7 shows the ISE performance obtained from the PID with filter tuning rule. Compar-
ing Figure 7 with Figure 3, one notices that the IMC-PID with filter tuning leads to higher
ISE than the IMC-PID for the same value of λ/θ; however, the PID with filter settings dis-
play much smoother closed-loop responses, as evidenced in Figure 7 (bottom). In industrial
practice, the smoothness of the response may well be worth the loss of performance in terms
of ISE.
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Figure 4: IMC-PID controlled variable responses for a step setpoint change, for various
settings of λ

θ
; solid: λ

θ
= 0.8; dotted: λ

θ
= 2.5; dashed: λ

θ
= 0.4.

Figure 5: J/Jopt and M for the “original” IMC-PI controller.
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Figure 6: Worst-case J/Jopt and M for the “improved” IMC-PI controller (top), and compar-
ison (for λ/θ = 1.7) with other methods: closed-loop Ziegler-Nichols (Z-N), and Cohen-Coon
(C-C) (bottom). Solid: J/Jopt; Dashed: M .
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Figure 7: J/Jopt and M for the IMC-PID with filter controller (top), and controlled variable
response comparison with the IMC-PID rule (bottom). For bottom figure, solid: IMC-PID
with filter (λ

θ
= 0.45); dotted: IMC-PID (λ

θ
= 0.8);


