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Theoretical Consideration of

Retarded Control

By G. H. COHEN! anp G. A. COON,2 ROCHESTER, N. Y.

This paper is concerned with a theoretical study of the
control of a single-capacity process with dead-period lag.
Characteristic equations corresponding to the application
of proportional, proportional-plus-derivative, propor-
tional-plus-reset, and proportional-plus-reset-plus-deriva-
tive responses are used to graph the controller parameters
necessary to obtain a desired degree of stability. The
degree of stability is taken to be associated with the ampli-
tude ratio of the lowest-frequency harmonic mode. Ef-
fects of the various controller parameters are shown and a
method is suggested to determine the adjustable parame-
ters for a desired degree of stability.

VER since the publication by Callender, Hartree, and Porter

(1) considerable attention has been directed to the study

of the dynamics of control of retarded systems. Some

interest has been shown in the “optimum adjustment’ of the

control parameters for particular types of control functions and

process characteristics (2-7). It is the purpose of this paper

to study the control of a single-capacity process with dead-period

lag. The controller will be assumed to be conventional; i.e., it

will have available proportional, integral or reset, and derivative
responses,

The two principal components of the control lodp are the proe-
ess and the controller. The process is considered to include all
parts of the installation exclusive of the controller. For this
discussion the final control element or valve will be included with
the process,

The process can be characterized by its reaction curve which is
the chart record obtained when the valve is given a sudden sus-
tained disturbance with the controller disconnected. Such a
record is shown in Fig. 1(¢) for a unit change in pressure. There
appears to be a period of time during which the pen moves but
little and this dead time or lag L may be of some magnitude in
comparison with the transfer lag (the lag due to the lumped ca-
pacity of the process). The dead time is due to the fact that the
process is really a continuum where the parameters which describe
the process are distributed. The lag due to the finite time of
transport of the signal (for example, a long tube which carries a
compressible fluid) is called a distance-velocity lag. If the con-
tinuum contains no inertia, it may be represented by a number
of cascaded lumped resistance-capacity networks. Increasing
the number of the cascaded elements gives a better approxima-
tion to the continuum since the order of contact with the time
axis increases with the number of elements in the lumped cireuit
approximation. However, the complexity of the problem in-
creases with the number of elements.

1 Research Engineer, Engineering Research Department, Taylor
Instrument Companies, Jun. ASME.

? Mathematician, Engineering Research Department, Taylor In-
strument Companies.
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(b) Process Nyquist plot,

(@) Process-reaction curve

Fia. 1

A good approximation which has the advantage of simplicity
may be obtained by introducing a certain amount of dead time
along with one or two resistance-capacity elements, In this
paper we approximate the reaction curve by using dead time
and a single-capacity lag.

The following differential equation can be used as the first ap-
proximation to the process

dYy R !
dt-i-MY—RAI(t Ly............. [1]
where Y = pen deviation from set point, in.
R = unit reaction rate, in/psi min
t = time, min
M = process sensitivity, in/psi
L = dead-period lag, min
AF = controller output change, psi
Z = process time constant, min

The frequency response G: is

Y(Zwe) R e~twl
G, = = P = /7
*= AFGwy) B " 1
a T

as shown in Fig. 1(b) where w, is the applied angular frequency.

We will consider a controller to regulate the process which has
proportional, integral and derivative response functions. This
controller may be represented by the following differential equa-
tion

(1
—AF() = S[Uf Y (o)de + V() + T‘%ft—):l_..m]
1]

where S
U
T

proportional sensitivity, psi/in
reset rate, min—!
derivative time, min

I

The controller response to a unit step in pen deviation and fre-
quency response Gy are shown in Figs, 2(a) and 2(b). It is more
interesting to make a phase-magnitude plot for a sinusoidal varia-
tion in ¥(¢) as shown in Fig. 3. This shows that the conven-
tional controller can be considered as a band-rejection filter and
amplifier, the low-frequency corner being determined by the reset
rate and the high-frequency corner by the derivative time. Pro-
portional sensitivity sets the amount of gain in the rejection band.

Since we are concerned with “regulators” we will consider

827
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(a) Controller transient response (b) Controller Nyquist plot
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only those disturbances which can be represented by a change
in Joad and not by a change in set point. One can easily go from
one to the other. In this investigation the load change occurs
at the valve end of the process at zero time and produces the
same reaction curve as a step change in pressure at the valve. For
the approximation to a single-capacity process with dead-period
lag we can write

d};t(t) + = ¥Y(#) = RAF(t— L) + R AD(t — L).. .-[3]

where AD is the load cha.nge, psi. In order to get the control-
loop equation in nondimensional form, we 1ntroduce the follow-
ing notation: :

R . . :
4 = —— = self-regulation index of process °
(i —0when M - «)

T = % = dimensionless ‘‘time”’
() = I%%%%)—O = dimensionless ‘“‘pen deviation’’
SRL = dimensionless proportional sensitivity setting
UL = dimensionless reset ‘‘rate’” setting
7= dlmenslonlegs derivative time setting

= SEL(UL) = integral parameter
= SRL = sensitivity parameter

T L . R
v; = SRL (f) = derivative parameter

For a constant disturbance AD, the control loop may be repre-
sented by the differential equation

a6 . . ! : L
— 4 ub(t) = B(o)do — vobl(7 — 1) .
dr : S 0 . : s

dﬂ('r — l)
dr

The ultimate aim in the adjustment of controllers is to obtain
a response curve which will satisfy the user’s requirement for good
control. The quality of control is therefore relative to the appli-
cation. The user usually wants minimum area under the response
curve, minimum deviation, and minimum cycling. Ziegler and
Nichols (2) suggest that the amplitude ratio of the response curve
be abeut 0.25, and -this is a commonly -accepted ru]e of thumb
in the process industry. -~ - '

Since retarded action implies that the resporise curve consists
of -an infinite number of harmonic modes, it would be fruitless to
prescribe the amplitude ratio for each mode. Wé¢ shall, there-
fore, designate the ““degree of stability’’ to be associated with the
amplitude ratio: of ‘the fundamental (lowest-frequency) harmonlc
mode. )

Adjustment of the controller will be based on lnformatlon ob-

JULY, 1953
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tained from the control region. We défine the control region to
be the graphic relationship between the adjustable control param-~
eters necessary to obtain a prescribed degree of stablhty of the
response curve. The characteristic equation of the control loop
is used to'plét the control region.

The control region may also be obtained by means of the well-
known methods of frequency analysis. Instead of using the
amplitude ratio of the fundamental harmonic modé as a meas-
ure of degree of stability, the loci of “constant magnitude’ are
commonly used. Since this method has reeeived considerable
attention in the past years, we will not consider it as a basis of
analysis. Moreover, there is at times serious error in estimating
stability and response from these diagrams (8).

We will now consider the special cases of proportional con-
trol, proportional-plus-derivative control, proportlonal—plus—reset
control, and proportlonal—plus-reset—plus-derlvatlve contro]

PrororTIONAL CONTROL (1; = »; = 0)

The control relationships are obtained from the characterlstlc
equation which for this case becomes .

A p+u+vze“1’=0 ..... X B [5]
There is an infinite number of roots correspoﬁding'to Equation
[5], the real roots (p = —38,) being shown in Fig. 4. We are
interested primarily in the pair of complex roots with the lowest-
frequency component which we denote by

where va amphtude ratlo of fundamental mode -

= ——l-lna
B 2T

——
n
\é\

¢! — -
- 05 ]l 02 03 -
. — 2 :

F16.4 REeaL Roors oF CHARACTERISTIC EQUATION [5]
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w

L
2r — dimensionless angular frequency of fundamental
mode ’

P = period, min

Substitution of Equation [6) into [5] and separation of the real
and imaginary parts yields

tan w 1

and " sinw
The foregoing equations define the control region for propor-
tional control as shown in Fig. 5. The sensitivity parameter is
plotted against the self-regulation index u. The solid lines are
contours of constant amplitude ratio a of the fundamental while
the broken lines are loci of constant dimensionless period P/L.

If the disturbance is a Heaviside step of height AD,

b(r) =

L + E Ae ™97 cos (W,T — Pn)
i t n=0

provided there are no repeated roots of the characteristic equa-
tion and where

A, = harmonic amplitudes
w, = harmonie frequencies
¢, = associated phase angles
r,w, = damping constants for each harmonic mode
8, = damping constants corresponding to real roots

|

The amplitudes of the first three harmonics are shown in Table 1.

TABLE 1 APPROXIMATE AMPLITUDES OF HARMONICS, PRO-
PORTIONAL CONTROL

(Amplitude ratio of fundamental = 0.25)

» Ao . Ay Az
0 0.858 0.0332 0.010
0.1 0.836 0.0332 0.010
0.3 0.696 0.0332 0.010
0.5 0.588 0.0332 0.010
0.7 0.502 0.0332 0.010
1.0 0.406 0.0332 0.010
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TABLE 2 OFFSET, INITIAL DEVIATION, AND PERIOD, PROPOR-
TIONAL CONTROL

(Amplitude ratio of fundamental = 0.23)
r; = time of initial deviation

8(r;) = magnitude of initial deviation
65 = offset
3 SRL os P/L I 8(s1)
0 . 1.03 0.970 4. 2.97. 1.49
0.10 1.05 0.870 4.4 2.86 1.33
1.0 1.30 0.435 3.4 2.28 0.68
10.0 M 5.19 0.066 2.2 2.00 0.10

It is evident that for 0 < u < 1 all of the higher harmonics in
Equation [7] are negligible in comparison with the fundamental.
Thus, if one chooses the amplitude ratio of the fundamental to
be 0.25, the response curve will have approximately this degree of
stability.

The offset 1/(¥; + u) and the time and magnitude of the initial
deviation (height of the first peak) of the response curve are shown
in Table 2 for various values of self-regulation and an amplitude
ratio of 0.25. It is seen that the initial deviation is about one
and one-half times the offset. .

A few representative response curves are shown in Fig, 6 for
the case of proportional control. These curves are easily sketched
by obtaining from Fig. 5 the sensitivity setting »; and period for
the process characteristic and desired degree of stability. For
an amplitude ratio of 0.25, the time and amount of initial devia-
tion as well as the offset may be determined from Table 2.

Fig. 7 shows the ratio of the sensitivity settings S necessary
to obtain an amplitude ratio of 0.25 to the settings necessary to
obtain an amplitude ratio of unity (the ultimate sensitivity S,)
as well as the period corresponding to this ultimate sensitivity.

PrororTIONAL-PLUS-DERIVATIVE CONTROL (¥, = 0)
The characteristic equation corresponding to this case is
p+ut+er(ve+vp) =0
As before, we obtain the equations for the control region

sin w
"

v; = (rsin w — cos w)e %" — pe ~¢
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=(1+ e ™wsinw— e " (rsin w + cos w)

Figs. 8 and 9 show the p-contours in the control region for
amplitude ratios of 0.25 and 1.0 (the stability-limit case). Asone
chooses settings along a 0.25-amplitude contour for a fixed u, it
is found that the controlled response changes considerably in
character. Table 3 shows what happens to the offset, the time
of initial deviation, the magnitude of the initial deviation, and
period for £ = 0.

It is evident that for the offset to be a minimum »; should be
hetween 0.3 and 0.4. For larger values of »; the offset inereases
at a rapid rate. The corresponding values are shown in Table 4
for a self-regulation index u of 0.3.

If 0.25-amplitude ratio is desirable and if minimum offset is re-
quired, then the controller can be adjusted according to Table 5
The period, initial deviation, magnitude of initial deviation, off-
set, and linear approximations for the settings also are shown
for various values of u.

TABLE 3 CHARACTERISTICS OF RESPONSE CURVES, PROPOR-
TIONAL-PLUS-DERIVATIVE CONTROL

=0 a = 0.25
va v (7 r/L 7 a(rn)
0.1 1.120 0.89 4.21 2.80 1.36
0.2 1.195 0.84 3.84 2.67 1.27
0.3 1.235 0.81 3.49 2.57 1.20
0.4 1.225 0.82 3.13 2.49 1.15
0.5 1.081 0.93 2.74 2.45 1.12

TABLE 4 CHARACTERISTICS OF RESPONSE CURVIES, PROPOR-
TIONAL-PLUS-DERIVATIVE CONTROL

» =03 = 0.25
v3 ve (13 P/L L 8(+1)
0.1 1.182 0.68 3.76 2.55 1.02
0.2 1.245 0.63 3.48 2.45 0.98
0.3 1.267 0.64 3.17 2.38 0.94
0.4 1.228 0.65 2.86 2.31 0.91

TABLE 5 CHARACTERISTICS FOR PROPORTIONAL-PLUS-DE-
RIVATIVE CONTROL WITH MIENlltl\g’IFJIM OFFSET AND 0.25 AMPLI-

vs = 0.161 x + 1.240
»n = —0.111 g + 0.335

" oy P/L Ty H(rl)
0 0.81 3.40 2.565 1.17
0.1 0.75 3.31 2.48 1.00
0.3 0.64 3.16 2.38 0.94
0.5 0.55 3.05 2.28 0.83
0.7 0.49 2.96 2.20 0.74
1.0 0.42 2.88 2.12 0.64

~
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Fre. 8 ConrroL REGION FOR PROPORTIONAL-PLUS-DERIVATIVE
ConTROL, 0 = 0.25

The response curves for w = 0 and g = 0.3 are shown in Fig.
10.

PrororrioNAL-PLus-ResET CoNTROL (¥5 = 0)

The addition of reset response removes offset, but tends to
make the system more unstable, The characteristic equation
for this case may be written

P+ pu +e7r (v + vep) =
and the control region is defined by

we ™" [27 cos w + (1 — r?) sin w]
+ pe~" [r sin w — cos w]

V2

V= vrw + wte " [(1 — r?) cos w — 2r sin w]
+ pwe™ " [r cos w + sin wl

These equations allow one to plot the control region shown in Fig.
11. The control parameter v; is plotted against », for various u
and for an amplitude ratio of 0.25. The contours for the sta-
bility-limit case and for critical damping are shown in Figs. 12
and 13, respectively.

Tt is also known that the control area is

/ (o)do = 1
0 Vi

As one progresses along a particular contour of 0.25 amplitude
ratio, it is found that the control area does not change very much
in the neighborhood of maximum », but the frequency does. It
is desirable to keep the frequency as large as possible and retain
minimum control area.

2s N \V\\ H
\\ \ | \\ f
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CONTROL
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F1g. 10 ResPoNsE CURVES FOR PROPORTIONAL-PLUS-DERIVATIVE
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TROL, ¢ = 0.25
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Fig. 14 shows response curves for settings chosen along the
0.25 amplitude contour in the control region.

If it is desirable that the response curve be critically damped
so that most of the area of the curve is above the control point,
then Fig. 13 is used. For this case the criterion of minimum con-
trol area is the selection of the maximum value of »; on the con-
tour of eritical damping.

PrOPORTIONAL-PLUS-RESET-PLUS-DERIVATIVE CONTROL

If derivative action is added to a proportional-plus-reset con-
troller, the characteristic equation is

P2+ pu e (v + vep + vip?) =0
Again we find

y, = g {(27w— @) cos w + [ur + w(l — r?)]
X sin w} + 2rov

O.\Q 06 08 ~ N

A
-0.2 9( \‘

e
£ A

F1g.12 Srasirity LiMmits rorR ProPorTIONAL-PLUS-RESET CONTROL

_;4__,

05

7
>

A=

=

Q2 03 04

%
1/ 777

Fia. 13 CriticalL DampiNg CoNTOURS FOR PROPORTIONAL-PLUS-
ResET CONTROL
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F1a. 14 REesponNsE CURvES FOR PrororTIONAL-PLUs-REsSET CON-
TROL

(@) g =0n=027n=090; (b)u=0n=0.18, = 0.96;

@€ p=0,n=0073 v =101; (d g = 03, n = 045, r = 0.93
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vo= wrvs + we™ " {{ur + (1 —r})]cos w + (u— 2rw)
X sin w} + w1 — s . !
The control regions obtained from the foregoing equations are 17— i\y/ \
shown in Figs. 15 and 16 when the fundamental harmonic com- (/,"
. ponent of the response curve has an amplitude ratio of 0.25. 1§ v 1
; There is an infinite number of modes which add up to the actual /f / T
response. The introduction of derivative makes it possible to 2 . /
have a set of values of »;, ¥, and », yield not only a mode having 4 : %\ { % s\}l
0.25 amplitude ratio but also a critically damped mode. The §’/ E/
contours for the stability limit are shown in Figs. 17 and 18. 13 AR
Representative response curves for parameters chosen on a gé \
0.25 amplitude ratio contour for u = 0 and g = 0.3 are shown in 12 st 5 — T
Figs. 19 and 20. The values of the parameters in Fig. 20 were ||7§Y4zﬁ // /7 \ . o
taken so as to make the control area a minimum when »; = 2 [ ! / // \ B :
0.5 (curve a), to make the parameter v, a maximum when v; = 0.5 b 1ol —ay . / / :
I (curve b), and to satisfy both 0.25 amplitude ratio and critical L s \ !
! damping when »; = 0.5 (curve ¢). The parameter »; = 0.5 gives ™ o9 ®
approximately the largest possible value of », satisfying simul- : /// \
taneously the condition of the critical damping and 0.25 ampli- o8
tude ratio. Curve ¢ may be considered optimum. o | \
CONCLUSIONS 06 l‘ . ‘
We have shown how the control regions are used to determine | \
the control-parameter settings for a prescribed degree of sta- o®
bility of the response curve. One must be able to obtain the oa
process constants u, B, and L from the process-reaction curve
and to write the linearized approximate equations for the con- 03
troller.
Since there is a degree of latitude in the actual controller set- o2 I
tings, this method suffices for most practical cases. This is evi- ol f ‘ :
\/\ %504 o8 iz 15 P 26724 28 31.2 3L
x v Y / \ Fie. 16 CoxtrRonL RrcioN rForR ProPORTIONAL-PLUS-RESET-PLus-
DertvaTive CoNTROL, # = 0.3, a = 0.25
s / / dent by the fact that the settings prescribed by Ziegler
\ and Nichols have been commonly accepted. However, the Ziegler-
Nichols settings do not take into consideration the self-regulation
of the process.

We therefore suggest the following settings, if the degree of

stability specified by 0.25 amplitude ratio for the fundamental
\ mode is desirable:
\ Proportional control (criterion, 0.25 amplitude ratio()
AN ve =103 +035 p................. (8]
N Proportional-plus-derivative (criteria, 0.25 amplitude ratio
N and minimum offset) ' '
v, =124 4+ 016 u 9]
by = 084 — Q.11 [ T

Proportional-plus-reset (criteria, 0.25 amplitude ratio and
compromise between minimum area and period)

ve = 0.9 + 0.083 u =027 +06u......[10]

Proportional-plus-reset-plus-derivative (criteria, 0.25 amplitude
ratio and critical damping modes dominant, maximum »;)

ve = 1.35 + 0.25 u vy =054 4033 vy = 0.5..(11]

If there is no interaction between controller adjustments then
one can obtain the actual controller adjustments as follows

6 20 24 28 32 36 40
—

v - .

Fie. 15 CoNTROL REGION FOR PROPORTIONAL-PLUS-RESET-PLUs- S = =2 o sensitivity, adjustment knob setting

DEeRIVATIVE CONTROL, & = 0, a = 0.25 RL
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Fia. 18 StasBIiLity Limvits For PROPORTIONAL-PLUS-RESET-PLUS-
DerivaTive CONTROL, p = (.3

V1

V=L

reset rate, adjustment knob setting

T = ? L =" derivative time, adjustment knob setting
2
If there is interaction between controller settings, then the
parameters »;, ¥, and v; are first obtained from the linearized
controller equation. For example, a cascade controller (9) has
the following relation between adjustable parameters and the
control constants

! i z 3\4%_%’5 T&Q‘E/g

F1c. 20 Response CURVES FOR PROPORTIONAL-PLUS-RESET-PLUs-
DzerivaTive CONTROL

(@) m = 1.24, v = 145, » = 0.5
(b) m = 1.02, »2 = 1.5, » = 0.5
P () n = 0.64, »2 = 143, 13 = 0.5

vy = 8(1 + U'T")RL n = 8'U"RL? vy = S'T'R..[12]

where 8’ = adjustable knob labeled “Sensitivity”’
U’ = adjustable knob labeled “Reset Rate”
T’ = adjustable knob labeled “Derivative Time”’

Relationships [11] yield »,, »5, and »;, and then Equations [12]
are used to obtain §’, U’, T, the actual knob settings of the
cascade controller.

The contro] regions show that increasing the self-regulation
index p makes the loop gain SM smaller so that for a fixed proc-
ess sensitivity, M, the controller sensitivity S decreases. Also,
the control area and period decrease as u increases.

The use of reset to remove offset makes the control less stable
since a smaller value of sensitivity must be used in comparison
with proportional alone. Moreover, the control-region graphs
show that the period increases with the addition of reset to pro-
portional control. .

The addition of derivative action allows one to use increased
sensitivity and reset rate. Hence the period is decreased further
and the control area is decreased, giving much better control.
It is apparent that the addition of derivative action decidedly
improves control for values of self-regulation 0 < u < 1. For
processes having u > 1 derivative offers little advantage from«the
standpoint of load-change disturbances. However, as pointed
out in reference (9) start-up of a batch process requires the use
of derivative to prevent overpeaking. Hence derivative is al-
most always a desirable response.
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E. Clarridge,

Discussion

Y. Tagranasur.® The authors are to be congratulated on pre-
senting a paper with very clear conclusions and very useful con-
trol-region diagrams.

The authors’ statements on the complexities of industrial proe-
esses and the presence of continuum are highly important, con-
sidering such complexities were oceasionally ignored by some
control mathematicians, leading to utopian conclusions such as
infinite gain as an optimum.

Theoretically the horizontal asymptote in Fig. 3 (a) should be
defined by S’ of the following equation

AF/Y = 80 + U'/p) (1 + T'p)

Putting this identical to the corresponding form of Equation [2]
of the paper we get

- :;: (1 = v/1—4UT)

But, in most cases, cspecially near the optimum settings, the dif-
ference between 8 and 8’ is very slight; moreover, the authors’
horizontal line of the height ‘20 log 8"’ comes nearer to the exact
attenuation curve than that of S’.

Compared with the results of other papers,’ the values from
the authors’ equation are among the higher. Generally, the con-
clusions depend upon the definition of “optimum,” so if the
transient response itself is considered instead of the fundamental
mode of oscillation, they are influenced by the nature of disturb-
ance, defined statistically or as a time function. For the latter
case the writer tried an dlld,l\ sis, Assuming the disturbance of
the form

= AD()(I - e*‘/”)
and defining the optimum to be the minimum control area of

©
6/‘ 16(a)lde, it was seen that the longer the 7', the stronger

4 Professor, University of Tokyo, Chiba-City, Japan.

5 Authors’ Bibliography (2, 3, 5, 6, 7), and ““On the Automatic
Control of Generalized Passive Systems,” by Kun Li Chien, J. A.
Hrones, J. B. Reswick, Trans. ASME, vol, 74, 1952, p. 175.
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the optimum settings; for example, the optimum settings of pro-
portional controls are

=0 p=1
SRL = 0.89 091 forTy=0
SRL = 1.07 1.40 for Ty =-2L

Finally, the writer would like to point out Dr. Oppelt's com-
ments® on the importance of Ziegler-Nichols’ ultimate sensitivity
method. This enables us to take into account the self-regulation
of the process, and according to Oppelt, its results approximately
coincide with Hazebroek-Waerden’s optimum values for propor-
tional-plus-reset controls.

AutHOoRs' CLOSURE

For the process u = 0 Fig. 21 below shows the integral

e
0 vy + U

ratio for various values of v.. [t is evident that the absolute area

o) —

do as well as the offset and amplitude
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defined by the integral has a very broad minimum. It appears
that changing ¥, from 0.58 to 1.25 does not change the absolute
area more than 25 per cent whereas the offset changes about 50
per cent. Hence, 0.25 amplitude ratio appears to give a good
compromise between offset and minimum absolute area in the case
of proportional control. It can also be shown that this criterion
of absolute area agrees with our results for a three-term controller.
The authors wish to point out that Professor Takahashi has done
considerable work along these lines.”

Professor Takahashi’s discussion brings out some interesting
aspects concerning the interaction of knob settings in the cascade
type of controller. As long as U’ < 1/T", the knob settings cor-
rectly describe the controller functions. However, when U’ >
1/T’, the straight line approximations to the frequency response
of the controller indicate that the knob labeled reset actually
controls the derivative response and vice versa. Also, the sen-
sitivity depends more strongly on the settings of the reset and
derivative knobs.

It may be noted that the optimum settings given by Huaze-
broek and van der Waerden arc based on a change in set point.

§ “Einige Faustformeln zur Einstellung von Regelvorgingen,” by
W. Oppelt, Chemische Ingenieur Technische, vol. 23, 1951, p. 190.

7 “Automatie Control,” by Y. Takahashi, The Science and Tech-
nique Book Co., Kanazawa, Japan, 1949 (in Japanese.)




